La computación cuántica es un paradigma de computación distinto al de la computación clásica. Se basa en el uso de cúbits en lugar de bits, y da lugar a nuevas puertas lógicas que hacen posibles nuevos algoritmos.
Una misma tarea puede tener diferente complejidad en computación clásica y en computación cuántica, lo que ha dado lugar a una gran expectación, ya que algunos problemas intratables pasan a ser tratables. Mientras que un computador clásico equivale a una máquina de Turing,1 un computador cuántico equivale a una máquina de Turing
cuántica.
Origen de la computación cuántica
Una partícula clásica, si se encuentra con un obstáculo, no puede atravesarlo y rebota. Pero con los electrones, que son partículas cuánticas y se comportan como ondas, existe la posibilidad de que una parte de ellos pueda atravesar las paredes si son los suficientemente delgadas; de esta manera la señal puede pasar por canales donde no debería circular. Por ello, el chip deja de funcionar correctamente.
En consecuencia, la computación digital tradicional no tardaría en llegar a su límite, puesto que ya se ha llegado a escalas de sólo algunas decenas de nanómetros. Surge entonces la necesidad de descubrir nuevas tecnologías y es ahí donde la computación cuántica entra en escena.
La idea de computación cuántica surge en 1981, cuando Paul Benioff expuso su teoría para aprovechar las leyes cuánticas en el entorno de la computación. En vez de trabajar a nivel de voltajes eléctricos, se trabaja a nivel de cuanto. En la computación digital, un bit sólo puede tomar dos valores: 0 o 1. En cambio, en la computación cuántica, intervienen las leyes de la mecánica cuántica, y la partícula puede estar en superposición coherente: puede ser 0, 1 y puede ser 0 y 1 a la vez (dos estados ortogonales de una partícula subatómica). Eso permite que se puedan realizar varias operaciones a la vez, según el número de cúbits.
El número de cúbits indica la cantidad de bits que pueden estar en superposición. Con los bits convencionales, si se tenía un registro de tres bits, había ocho valores posibles y el registro sólo podía tomar uno de esos valores. En cambio, si se tenía un vector de tres cúbits, la partícula puede tomar ocho valores distintos a la vez gracias a la superposición cuántica. Así, un vector de tres cúbits permitiría un total de ocho operaciones paralelas. Como cabe esperar, el número de operaciones es exponencial con respecto al número de cúbits.
Para hacerse una idea del gran avance, un computador cuántico de 30 cúbits equivaldría a un procesador convencional de 10 teraflops (10 millones de millones de operaciones en coma flotante por segundo), actualmente la supercomputadora Summit tiene la capacidad de procesar 200 petaflops.
Ver Mas
0 comentarios:
Publicar un comentario